Training a Genre Classifier for Automatic Classification of Web Pages
نویسندگان
چکیده
This paper presents experimentson classifyingweb pages by genre. Firstly, a corpus of 1 539 manually labeled web pages was prepared. Secondly, 502 genre features were selected based on the literature and the observation of the corpus. Thirdly, these features were extracted from the corpus to obtain a data set. Finally, two machine learning algorithms, one for induction of decision trees (J48) and one ensemble algorithm (bagging), were trained and tested on the data set. The ensemble algorithm achieved on average 17% better precision and 1.6% better accuracy, but slightly worse recall; F-measure did not vary significantly. The results indicate that classification by genre could be a useful addition to search engines.
منابع مشابه
Cybergenre: Automatic Identification of Home Pages on the Web
The research reported in this paper is part of a larger project on the automatic classification of web pages by their genres. The long term goal is the incorporation of web page genre into the search process to improve the quality of the search results. In this phase, a neural net classifier was trained to distinguish home pages from non-home pages and to classify those home pages as personal h...
متن کاملPerformance Improvement of Web Page Genre Classification
The dynamic nature of web and with the increase of the number of web pages, it is very difficult to search required web pages easily and quickly out of thousands of web pages retrieved by a search engine. The solution to this problem is to classify the web pages according to their genre. Automatic genre identification of web pages has become an important area in web page classification, because...
متن کاملAutomatic Genre Classification in Web Pages Applied to Web Comments
Automatic Web comment detection could significantly facilitate information retrieval systems, e.g., a focused Web crawler. In this paper, we propose a text genre classifier for Web text segments as intermediate step for Web comment detection in Web pages. Different feature types and classifiers are analyzed for this purpose. We compare the two-level approach to state-ofthe-art techniques operat...
متن کاملSome Issues in Automatic Genre Classification of Web Pages
In this paper, two experiments in automatic genre classification of web pages are presented. These two experiments are designed to highlight three important issues related to genre classification: corpus composition and genre palettes, feature representativeness, and exportability of classification models. Results show the influence of corpus composition and genre palette on classification rate...
متن کاملComparison of the Performance of Genre Classifiers Trained by Different Machine Learning Algorithms
Modern search engines aim at classifying web pages not only according to topics, but also according to genres. This paper presents the results of an attempt to train a genre classifier. We present features extracted from a 20-genre corpus used for training the genre classifiers and the results of using different machine learning (ML) algorithms in the process of learning. Success of the genre c...
متن کامل